
Generalizations of the clustering coefficient to weighted complex networks

Jari Saramäki,1,* Mikko Kivelä,1 Jukka-Pekka Onnela,1,2 Kimmo Kaski,1 and János Kertész1,3

1Laboratory of Computational Engineering, Helsinki University of Technology, P.O. Box 9203, FIN-02015 HUT, Finland
2Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU, United Kingdom

3Department of Theoretical Physics, Budapest University of Technology and Economics, Budapest, Hungary
�Received 31 August 2006; published 23 February 2007�

The recent high level of interest in weighted complex networks gives rise to a need to develop new measures
and to generalize existing ones to take the weights of links into account. Here we focus on various generali-
zations of the clustering coefficient, which is one of the central characteristics in the complex network theory.
We present a comparative study of the several suggestions introduced in the literature, and point out their
advantages and limitations. The concepts are illustrated by simple examples as well as by empirical data of the
world trade and weighted coauthorship networks.
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The study of networks has become a central topic in the
science of complex systems �1–3�. In the network approach,
interacting elements are depicted as vertices in the network
and their interactions as edges connecting the vertices. The
inherent strength of this approach lies in its ability to capture
some of the essential characteristics of interacting systems by
disregarding the detailed nature of both the constituents and
the interactions between them. Studies on structural proper-
ties of complex networks have revealed features common to
a large number of natural and man-made systems, such as
short average path lengths, broad degree distributions, modu-
larity, and a high level of clustering.

Recently, it has become increasingly clear that in order to
understand better the properties of the system, it is necessary
to take into account some of its hitherto omitted details. In
particular, understanding the heterogeneity of interaction
strengths and their correlations with network topology is fun-
damental in studies of several types of networked systems,
e.g., social and traffic networks. This heterogeneity can be
taken into account by assigning weights to the network edges
to quantify, e.g., fluxes in traffic-related networks �4� �air
traffic, Internet�, strengths of social ties �5�, correlations be-
tween stock returns �6�, and trade volumes between coun-
tries.

Incorporating this additional degree of freedom in the
complex networks framework calls for entirely different
measures as well as generalizations of the existing ones.
Some of these measures are readily generalizable, e.g., the
vertex degree ki, denoting the number of edges connected to
vertex i. For this the natural weighted counterpart is the ver-
tex strength si=� j��i

wij �4�, where �i denotes the neighbor-
hood of i and wij are the weights of edges emanating from i
�7�. Unfortunately, not all existing network characteristics
can be generalized in such a straightforward manner. Here
we will focus on the several alternative definitions proposed
in the recent literature for the weighted clustering coefficient.

A large number of networks show a tendency for link
formation between neighboring vertices, i.e., the network to-
pology deviates from uncorrelated random networks in
which triangles are sparse. This tendency is called clustering

�8,9�, and it reflects the clustering of edges into tightly con-
nected neighborhoods. Its origins can be traced back to so-
ciology, where similar concepts have been used �10,11�—in
a typical social network, the friends of a person are very
likely to know each other. The clustering around a vertex i is
quantified by the �unweighted� clustering coefficient Ci, de-
fined as the number of triangles in which vertex i participates
normalized by the maximum possible number of such tri-
angles,

Ci =
2ti

ki�ki − 1�
, �1�

where ti denotes the number of triangles around i. Hence
Ci=0 if none of the neighbors of a vertex are connected, and
Ci=1 if all of the neighbors are connected. In network analy-
sis this quantity can then be averaged over the entire network
or by vertex degree.

By extending the above line of reasoning, the weighted
clustering coefficient should also take into account how
much weight is present in the neighborhood of the vertex,
compared to some limiting case. Evidently, this can be done
in several ways, and in what follows we focus on four exist-
ing definitions. In all these formulas, wii=0∀ i, i.e., self-
edges are not allowed, and j ,k��i.

�1� Barrat et al. were the first to propose a weighted ver-
sion of the clustering coefficient �4�. Their definition reads as
follows:

C̃i,B =
1

si�ki − 1��j,k
wij + wik

2
aijajkaik, �2�

where aij =1 if there is an edge between i and j, and 0 oth-
erwise. Noting that si=ki�si /ki�=ki�wi�, this may also be
written as

C̃i,B =
1

ki�ki − 1��j,k
1

�wi�
wij + wik

2
aijajkaik,

where �wi�=� jwij /ki. As the rewritten form shows clearly,
the contribution of each triangle is weighted by a ratio of the
average weight of the two adjacent edges of the triangle to
the average weight �wi�.

�2� Onnela et al. proposed a version �12� of weighted*Electronic address: jsaramak@lce.hut.fi
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clustering coefficient based on the concept of subgraph in-
tensity, defined as the geometric average of subgraph edge
weights, resulting in

C̃i,O =
1

ki�ki − 1��j,k �ŵijŵikŵjk�1/3. �3�

Here the edge weights are normalized by the maximum
weight in the network, ŵij =wij /max�w� and the contribution
of each triangle depends on all of its edge weights. Thus
triangles in which each edge weight equals max�w� contrib-
ute unity to the sum, while a triangle having one link with a
negligible weight will have a negligible contribution. This
definition can be rewritten as

C̃i,O = CiIi with Ii =
1

2ti
�
j,k

�ŵijŵikŵjk�1/3, �4�

where Ci is the unweighted clustering coefficient and Ii de-
notes the average �normalized� intensity of triangles in which
vertex i participates.

�3� Zhang et al. have defined, in the context of gene co-
expression networks �13�, the weighted clustering coefficient
as

C̃i,Z =

�
j,k

ŵijŵjkŵik

��
k

ŵik	2
− �

k

ŵik
2

, �5�

where the weights have again been normalized by max�w� as
above. The logic behind this definition is the following: the
number of triangles around vertex i can be written in terms
of the adjacency matrix elements as ti=

1
2� j,kaijajkaik, and the

numerator of Eq. �5� is simply a weighted generalization of
this formula. The denominator has been chosen by consider-

ing the upper bound of the numerator, ensuring C̃i,Z� �0,1�.
This formula can also be written as �14�

C̃i,Z =

�
j,k

ŵijŵjkŵik

�
j�k

ŵijŵik

. �6�

A similar definition has also been presented in Refs. �15,16�,
where the edge weights are interpreted as probabilities such
that in an ensemble of networks, i and j are connected with
probability ŵij.

�4� Holme et al. have defined the weighted clustering co-
efficient as �17�

C̃i,H =

�
j,k

wijwjkwki

max�w��
j,k

wijwki

=
Wii

3

�WWmax W�ii
, �7�

where W denotes the weight matrix, and Wmax denotes a
matrix where each entry equals max�w�. The lines of reason-
ing look similar to those of Ref. �13�; however, j�k is not
required in the denominator sum.

Table I presents the selected features of the four weighted

clustering coefficients and illustrates their differences. These
features are discussed in detail below. In Table I and in what
follows, C̃ denotes the weighted clustering coefficient and C
the corresponding unweighted coefficient, with their proper-
ties summarized below.

�i� C̃=C when weights are binary, i.e., wij =1 if i and j are
connected. This condition is fulfilled by all weighted cluster-
ing coefficients except that of Holme et al. When the weights
are set to binary, C̃i,H=2ti /ki

2, which approaches the un-
weighted coefficient only when ki�1.

�ii� C̃� �0,1�. This is true for all weighted coefficients

except C̃i,H, which never reaches unity for the reason men-

tioned above. Let us consider the limiting values �Ci
˜ =0, Ci

˜

=1� in more detail. For all coefficients, Ci
˜ =0 signifies the

absence of triangles. A necessary condition for C̃i,B=1, C̃i,O

=1, and C̃i,Z=1 is that edges exist between all neighbors of
vertex i. However, each coefficient sets a different require-

ment for the weights. When C=1, then C̃i,B=1 irrespective

of the edge weights. Contrary to this, C̃i,O=1 requires that
the weights of all edges wij =wjk=max�w�, i.e., all weights in
each triangle are equal to the maximum weight in the net-

work. Finally, C̃i,Z=1 if each “outer” edge wjk=max�w�, ir-
respective of the weights wij of edges emanating from i.

�iii� Global max�w� is used in normalization. This is true

for all versions except C̃i,B, where only the local strength si
matters. This particular choice means that within the same
network, two vertices whose neighborhood topology and
relative weight configuration are similar can have the same

values of C̃B even if all the weights in the neighborhood of

TABLE I. Motivation and comparison of selected features for
different weighted clustering coefficients.

Coefficient Motivation

C̃B Reflects how much of vertex strength is associated
with adjacent triangle edges.

C̃O Reflects how large triangle weights are compared
to network maximum.

C̃Z Purely weight based; insensitive to additive noise,
which may result in the appearance of
“false-positive” edges with small weights.

C̃H Similar to C̃Z, based only on edge weights.

Feature C̃B C̃O C̃Z C̃H

�1� C̃=C when weights become binary. � � �

�2� C̃� �0,1�. � � �

�3� Uses global max�w� in normalization. � � �

�4� Takes into account weight of all edges in
triangles.

� �

�5� Invariant to weight permutation for one
triangle.

�

�6� Takes into account weights of edges not
participating in any triangle.

� � �
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one vertex are small and those in the neighborhood of the
other are large.

�iv� Weights of all edges of triangles in which i partici-

pates are taken into account. This is true for C̃i,O and C̃i,H.

However, C̃i,B takes into account only the weights of the
edges connected to i. When Ci=1 and all wjk,j�k are equal,

C̃i,Z=wjk, i.e., it is insensitive to the weights wij.
�v� Invariance to permutation of weights within a single

triangle. This feature is present only in C̃i,O, showing that it
deals with the triangles as an entity.

�vi� Weights of edges not participating in triangles are
taken into account. This is the case for all definitions except

C̃i,O, where such edges only enter through the vertex degree
k.

These differences are depicted also in Fig. 1, which dis-
plays the value of the clustering coefficient for a vertex par-
ticipating in one triangle with varying weight configurations,
including vanishingly small weights. In Fig. 1 and in the

following, the analysis of C̃i,H is omitted as it is closely

related to C̃i,Z but is normalized in a way which can be
viewed as incorrect. Next, we compare the behavior of the
different coefficients in two different empirical networks.

�1� International Trade Network (ITN). The ITN is con-
structed from trade records between the world’s countries
during the year 2000, such that vertices denote countries,
edges trade relationships, and edge weights trade volumes.
The source data �18� includes the dollar volumes of exports
and imports between countries but, due to different reporting
procedures, there are usually small differences between ex-
ports Vij

exp from i to j and imports Vji
imp to j from i. We have

chosen the edge weights wij as a measure of the total trade
volume such that wij =

1
2 �Vij

exp+Vji
exp+Vij

imp+Vji
imp�, averaging

over the aforementioned discrepancies. The network con-
structed in this manner has N=187 countries connected with
E=10 252 edges, i.e., it has a relatively high edge density of
52%. High-trade-volume countries typically engage in high-
volume trade with each other and, thus, in the network the
high-weight edges are clustered, forming a “rich club.”

Figure 2 depicts the different weighted clustering coeffi-
cients as function of vertex strength s. The unweighted clus-
tering coefficient C is also displayed for reference. Due to
the large number of edges, C remains high for all s. For low

s, C̃B follows C very closely, whereas for high values of

s , C̃B gets values higher than C, which can be attributed to
high-trade-volume countries engaging in mutual high-

volume trade. This effect is far more pronounced in C̃O,

which displays a power-law-like increasing trend C̃O�s��s�

with �
0.4, spanning several decades. This effect is almost

purely due to the behavior of the average triangle intensity Ī

�see Eq. �4��, as the unweighted C changes only a little. C̃Z is
seen to remain rather insensitive to the weights. Note that the

overall level of C̃O and C̃Z is much lower than that of C and

C̃B due to weight normalization by the global max�w� and to
a broad distribution of weights.

�2� Scientific Collaboration Network (SCN). The SCN is
constructed from scientists �19� who have jointly authored
manuscripts submitted to the condensed matter physics
e-print archive �http://www.arxiv.org� from 1995 to 2005. In
this network, vertices correspond to scientists and edges to
co-authorships of papers. The edge weights have been de-
fined such that wij =�p��i,p� j,p� / �np−1�, where the index p
runs over all the papers, �i,p=1 if scientist i is an author of
paper p and 0 otherwise, and np is the number of authors of
paper p �19�. This network has N=40 422 nodes and an av-
erage degree of �k�
8.7.

Figure 3 displays different clustering coefficients as a
function of degree �upper panel� as a well as the ratio of the
weighted clustering coefficients to the unweighted coeffi-

cient �lower panel�. Similarly to Ref. �4� C̃B�k� remains
rather close to C�k� for k�10 but for k	10 their ratio is
somewhat increased, indicating that the weights of edges that
do not participate in triangles are relatively low and/or the
weights of edges participating in several triangles are rela-

FIG. 1. Values of the weighted clustering coefficients for differ-
ent weight configurations when vertex i �solid circle� participates in
a single triangle. Solid lines �—� depict edges of weight w
=max�w�=1, whereas dashed lines �---� depict edges with vanish-
ingly small weights w=
�1. Note that in many cases different
weight configurations yield the same coefficient values.

FIG. 2. �Color online� Clustering coefficients computed for the
international trade network �ITN� as a function of vertex strength s:

Unweighted C ��� and weighted C̃B ���, C̃O ���, and C̃Z, ���.
Inset: closer view on C and C̃B with a linear vertical axis.
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tively high. In contrast, the shape of C̃O�k� differs from C�k�
for k�10. According to Eq. �4�, the ratio C̃O�k� /C�k� in the

lower panel reflects the average intensity Ī�k� of triangles
around vertices of degree k. The ratio is the largest for low-
degree vertices, becoming approximately constant at k�10.
A possible reason for this is that young scientists �e.g. gradu-
ate students� tend to participate in repeated collaborations
involving a relatively small number of authors, giving rise to

high-intensity triangles. C̃Z�k� appears to capture the low-k

behavior of C̃O as well as the high-k behavior of C̃B.
It is clear from the above considerations that there is no

ultimate formulation for a weighted clustering coefficient.
Instead, we have seen that the different definitions capture
different aspects of the problem at hand. For unweighted
networks, it is straightforward to measure how many edges
out of possible ones exist in the neighborhood of a vertex;
yet the questions of how to measure the amount of weight
located in this neighborhood and what to compare this with,

are far from obvious. In a sense C̃B and C̃O can be seen as

limiting cases: C̃B compares the weights associated with tri-
angles to the average weight of edges connected to the focal

vertex, while C̃O disregards the strength of the focal node
and measures triangle weights only in relation to the maxi-

mum edge weight in the network. C̃Z can be viewed as an
interpolation between these two, albeit being a somewhat
uncontrollable one as is evident from the examples in Fig. 1.
Given these observations, our conclusion is that there is no
single general-purpose measure for characterizing clustering
in weighted complex networks. Instead, it might be more
beneficial to approach the problem from two angles. While
the topological aspect can be described by the unweighted
clustering coefficient C, the importance of the triangles can
be quantified using the average triangle intensities of Eq. �4�.
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FIG. 3. �Color online� Clustering coefficients computed for the
scientific collaboration network �SCN� as a function of vertex de-

gree k: unweighted C ���, C̃B ���, C̃O ���, and C̃Z, ���. The lower
panel displays the ratio of the weighted coefficients to the un-
weighted C; each curve has been linearly scaled between its mini-
mum and maximum values to facilitate comparison.
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